MATH 512 MORE NOTES ON FORCING

Some definitions:

Definition 1. A poset \mathbb{P} has the κ -chain condition if every maximal antichain $A \subset \mathbb{P}$ has size less than κ . If $\kappa = \omega_1$, this is just the countable chain condition.

Definition 2. A poset \mathbb{P} is κ -closed if for every $\tau < \kappa$ and every decreasing sequence $\langle p_{\alpha} \mid \alpha < \tau \rangle$ (i.e. $\alpha < \beta \rightarrow p_{\beta} \leq p_{\alpha}$), there is a condition $p \in \mathbb{P}$, such that $p \leq p_{\alpha}$ for all α .

Preservation of cardinals:

Let \mathbb{P} be a poset. If λ is a cardinal in V, we say \mathbb{P} preserves λ if for any generic filter G, $V[G] \models ``\lambda$ is a cardinal." If on the other hand for any generic filter G, $V[G] \models ``\lambda$ is not a cardinal", then \mathbb{P} collapses λ .

Fact 3. Let \mathbb{P} be a poset and κ be a regular uncountable cardinal.

- (1) If \mathbb{P} has the κ -chain condition, then \mathbb{P} preserves all cardinals greater than or equal to κ .
- (2) If \mathbb{P} is κ -closed, then \mathbb{P} preserves all cardinals less than or equal to κ .

Projections

Definition 4. $\pi : \mathbb{P} \to \mathbb{Q}$ is a projection if:

- (1) if $p' \le p$, then $\pi(p') \le \pi(p)$.
- (2) for every $p \in \mathbb{P}$, if $q \leq \pi(p)$, then there is $p' \leq p$, such that $\pi(p') \leq q$. We say that \mathbb{P} projects to \mathbb{Q} , if there is a projection as above.

Lemma 5. Suppose that $\pi : \mathbb{P} \to \mathbb{Q}$ is a projection, and G is \mathbb{P} -generic. Then $H := \{q \in \mathbb{Q} \mid \exists p \in G, \pi(p) \leq q\}$ is \mathbb{Q} -generic.

Proof. H is upward closed by definition. Also if $q_1, q_2 \in H$, let $p_1, p_2 \in G$ be such that $\pi(p_1) \leq q_1, \pi(p_2) \leq q_2$. Let $p \in G$ be stronger than both p_1, p_2 . Then $\pi(p) \in H$ is stronger than both q_1, q_2 . So H is a filter.

For genericity, suppose that D is a dense subset of \mathbb{Q} . Define $\overline{D} := \{p \mid (\exists q)(\pi(p) \leq q, q \in D)\}$. We want to show that this is dense. Let $p \in \mathbb{P}$, and let $q \leq \pi(p)$ be such that $q \in D$ (here we use density of D). Then, since π is a projection, let $p' \leq p$ be such that $\pi(p') \leq q$. Then $p' \in \overline{D}$. So, \overline{D} is a dense subset of \mathbb{P} .

Now let $p \in \overline{D} \cap G$. That means there is some $q \in D$ with $\pi(p) \leq q$. Then $q \in D \cap H$.

Products and iterations

Definition 6. For posets \mathbb{P}, \mathbb{Q} in V, the product is $\mathbb{P} \times \mathbb{Q} := \{(p,q) \mid p \in \mathbb{P}, q \in \mathbb{Q}\}$, and $(p',q') \leq (p,q)$ iff $p' \leq p$ and $q' \leq q$.

Lemma 7. (The product lemma) Let K be $\mathbb{P} \times \mathbb{Q}$ -generic. Let $G = \{p \mid (\exists q)(p,q) \in K\}$ and $H = \{q \mid (\exists p)(p,q) \in K\}$. Then G is \mathbb{P} -generic over V, and H is \mathbb{Q} -generic over V[G].

Conversely, let G be \mathbb{P} -generic over V, and H be \mathbb{Q} -generic over V[G]. Then $K := \{(p,q) \mid p \in G, q \in H\}$ is $\mathbb{P} \times \mathbb{Q}$ -generic over V.

In both cases we have that V[K] = V[G][H] = V[H][G]. Also, since $\mathbb{P} \times \mathbb{Q}$ projects to both \mathbb{P} and \mathbb{Q} , we get $V \subset V[G] \subset V[K]$ and $V \subset V[H] \subset V[K]$.

Definition 8. In V, let \mathbb{P} be a poset, and suppose that $\dot{\mathbb{Q}}$ is a \mathbb{P} -name for a poset. Define the two step iteration, $\mathbb{P} * \dot{\mathbb{Q}} := \{(p, \dot{q}) \mid p \in \mathbb{P}, 1_{\mathbb{P}} \Vdash \dot{q} \in \dot{\mathbb{Q}}\},$ with the following ordering:

 $(p_1, \dot{q}_1) \le (p_2, \dot{q}_2)$ iff:

(1)
$$p_1 \leq p_2$$

(2) $p_1 \Vdash_{\mathbb{P}} \dot{q}_1 \le \dot{q}_2.$

Lemma 9. Let $\mathbb{P} * \dot{\mathbb{Q}}$ be a two step iteration. Suppose that K is $\mathbb{P} * \dot{\mathbb{Q}}$ generic over V. Then $G = \{p \mid (\exists \dot{q})(p, \dot{q}) \in K\}$ is \mathbb{P} -generic over V and $H := \{\dot{q}_G \mid (\exists p \in G)(p, \dot{q}) \in K\}$ is $\dot{\mathbb{Q}}_G$ -generic over V[G].

Conversely, if G is \mathbb{P} -generic over V and H is $\dot{\mathbb{Q}}_G$ -generic over V[G], then $K = \{(p, \dot{q}) \mid p \in G, \dot{q}_G \in H\}$ is $\mathbb{P} * \dot{\mathbb{Q}}$ -generic over V.

 $\mathbb{P} * \hat{\mathbb{Q}}$ projects to \mathbb{P} , and denoting the generics as above we have that, $V \subset V[G] \subset V[G][H] = V[K].$

Some examples:

- (1) The Cohen poset to add a real, $Add(\omega, 1) := \{f : \omega \to \{0, 1\} \mid |dom(f)| < \omega\}$ i.e. the set of all finite partial functions from ω to $\{0, 1\}$. The order is reverse inclusion: $f \leq g$ iff $f \supset g$. This poset has the countable chain condition, and so all cardinals are preserved. If G is a generic filter, set $f^* = \bigcup_{f \in G} f$. Since G is a filter, f^* is a function, and by a density argument the domain of f^* is ω . Then $a := \{n < \omega \mid f^*(n) = 1\}$ is a new real.
- (2) The Cohen poset to add λ many reals, $Add(\omega, \lambda) := \{f : \lambda \times \omega \rightarrow \{0, 1\} \mid |\operatorname{dom}(f)| < \omega\}$, ordered by reverse inclusion. It also has the countable chain condition, and so all cardinals are preserved. If G is a generic filter, $f^* := \bigcup_{f \in G} f$ is a total function. Let $a_{\alpha} := \{n < \omega \mid f^*(\alpha, n) = 1\}$ for $\alpha < \lambda$. Then $\langle a_{\alpha} \mid \alpha < \lambda \rangle$ are distinct new reals.
- (3) The Cohen poset to add λ many new subsets of a regular cardinal κ , $Add(\kappa, \lambda) := \{f : \lambda \times \kappa \to \{0,1\} \mid |\operatorname{dom}(f)| < \kappa\}$, ordered by reverse inclusion. It has the κ^+ -chain condition and it is κ -closed. So, all cardinals are preserved. As before, if G is a generic filter,

 $f^* := \bigcup_{f \in G} f$ is a total function and let $a_\alpha := \{\eta < \kappa \mid f^*(\alpha, \eta) = 1\}$ for each $\alpha < \lambda$. Then $\langle a_\alpha \mid \alpha < \lambda \rangle$ are distinct new subsets of κ .

- (4) Suppose $\kappa < \lambda$ are cardinals, such that κ is regular and $\lambda^{<\kappa} = \lambda$. The Levy collapse $Col(\kappa, \lambda) := \{f : \kappa \to \lambda \mid |\operatorname{dom}(f)| < \kappa\}$, ordered by reverse inclusion, is the poset to collapse λ to κ . It is κ -closed and has the λ^+ -chain condition. So, cardinals $\leq \kappa$ and $\geq \lambda^+$ are preserved. If G is a generic filter, then $f^* := \bigcup_{f \in G} f : \kappa \to \lambda$ is a total onto function. So, in $V[G], |\lambda| = \kappa$.
- (5) Suppose κ is a regular cardinal and λ is inaccessible. The Levy collapse $Col(\kappa, < \lambda) := \{f : \lambda \times \kappa \to \lambda \mid |dom(f)| < \kappa, (\forall \alpha < \lambda, \eta < \kappa)(f(\alpha, \eta) < \alpha)\}$, ordered by reverse inclusion, is the poset to collapse every cardinal below λ to κ . It is κ -closed and has the λ -chain condition. So, cardinals $\leq \kappa$ and $\geq \lambda$ are preserved. If G is a generic filter, let $f^* = \bigcup_{f \in G} f$. Then for each $\alpha < \lambda$, let $f^*_{\alpha} : \kappa \to \alpha$ be given by $f^*_{\alpha}(\eta) = f^*(\alpha, \eta)$; it is a total onto function. So, in V[G], $\lambda = \kappa^+$, i.e. it is the cardinal successor of κ .